skip to main content


Search for: All records

Creators/Authors contains: "Jin, Lei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The marine carbonate system is influenced by anthropogenic CO2uptake, biogeochemical processes, and physical changes that involve freshwater input and removal. Two frequently used parameters to quantify seawater carbonate system are total alkalinity (TA) and total dissolved inorganic carbon (DIC). To account for the physical changes, both TA and DIC are usually normalized to a reference salinity (i.e., nTA and nDIC), and then the relationship between nTA and nDIC is used to identify major biogeochemical processes that regulate the carbonate system, based on process‐specific reaction stoichiometry. However, the theoretical basis of this interpretation has not been holistically examined. In this study, we validated this method under  idealized conditions and discussed the associated assumptions and limitations. Furthermore, we applied this method to interpret field TA and DIC data from a lagoonal estuary in the northwestern Gulf of Mexico. Our results demonstrated that evaluating field data that encompass multiple stations and time periods could be problematic. In addition, various combinations of biogeochemical processes can lead to the same nTA–nDIC relationship, even though the relative importance of each individual process may vary significantly. Therefore, the stoichiometric relationship relying solely on TA and DIC data is not a definitive approach for uncovering dominant biogeochemical processes. Instead, measurements of process‐specific parameters are necessary.

     
    more » « less
  2. Traveling-wave optomechanical interactions, known as Brillouin interactions, have now been established as a powerful and versatile resource for photonic sources, sensors, and radio-frequency processors. However, established Brillouin-based interactions with sufficient interaction strengths involve short phonon lifetimes, which critically limit their performance for applications, including radio-frequency filtering and optomechanical storage devices. Here, we investigate a new paradigm of optomechanical interactions with tightly confined fundamental acoustic modes, which enables the unique and desirable combination of high optomechanical coupling, long phonon lifetimes, tunable phonon frequencies, and single-sideband amplification. Using sensitive four-wave mixing spectroscopy controlling for noise and spatial mode coupling, optomechanical interactions with long><#comment/>2µ<#comment/>sphonon lifetimes and strong><#comment/>400W−<#comment/>1m−<#comment/>1coupling are observed in a tapered fiber. In addition, we demonstrate novel phonon self-interference effects resulting from the unique combination of an axially varying device geometry with long phonon lifetimes. A generalized theoretical model, in excellent agreement with experiments, is developed with broad applicability to inhomogeneous optomechanical systems.

     
    more » « less
  3. Abstract We report the synthesis of ordered mesoporous ceria ( m CeO 2 ) with highly crystallinity and thermal stability using hybrid polymer templates consisting of organosilanes. Those organosilane-containing polymers can convert into silica-like nanostructures that further serve as thermally stable and mechanically strong templates to prevent the collapse of mesoporous frameworks during thermal-induced crystallization. Using a simple evaporation-induced self-assembly process, control of the interaction between templates and metal precursors allows the co-self-assembly of polymer micelles and Ce 3+ ions to form uniform porous structures. The porosity is well-retained after calcination up to 900 °C. After the thermal engineering at 700 °C for 12 h ( m CeO 2 -700-12 h), m CeO 2 still has a specific surface area of 96 m 2 g −1 with a pore size of 14 nm. m CeO 2 is demonstrated to be active for electrochemical oxidation of sulfite. m CeO 2 -700-12 h with a perfect balance of crystallinity and porosity shows the fastest intrinsic activity that is about 84 times more active than bulk CeO 2 and 5 times more active than m CeO 2 that has a lower crystallinity. 
    more » « less
  4. Abstract

    Converting CO2to value‐added chemicals,e. g., CH3OH, is highly desirable in terms of the carbon cycling while reducing CO2emission from fossil fuel combustion. Cu‐based nanocatalysts are among the most efficient for selective CO2‐to‐CH3OH transformation; this conversion, however, suffers from low reactivity especially in the thermodynamically favored low temperature range. We herein report ultrasmall copper (Cu) nanocatalysts supported on crystalline, mesoporous zinc oxide nanoplate (Cu@mZnO) with notable activity and selectivity of CO2‐to‐CH3OH in the low temperature range of 200–250 °C. Cu@mZnO nanoplates are prepared based on the crystal‐crystal transition of mixed Cu and Zn basic carbonates to mesoporous metal oxides and subsequent hydrogen reduction. Under the nanoconfinement of mesopores in crystalline ZnO frameworks, ultrasmall Cu nanoparticles with an average diameter of 2.5 nm are produced. Cu@mZnO catalysts have a peak CH3OH formation rate of 1.13 mol h−1per 1 kg under ambient pressure at 246 °C, about 25 °C lower as compared to that of the benchmark catalyst of Cu−Zn−Al oxides. Our new synthetic strategy sheds some valuable insights into the design of porous catalysts for the important conversion of CO2‐to‐CH3OH.

     
    more » « less
  5. null (Ed.)